Methylenblau: Eine Farbe, die Medizingeschichte gemacht hat

Dem jungen Landarzt Robert Koch war es mit Methylenblau gelungen, den Tuberkelbazillus zu entlarven. Er wies nach, daß kleinste Lebewesen die Erreger aller ansteckenden Krankheiten sind. Einer seiner Schüler war Paul Ehrlich. Eines Tages machte dieser die Entdeckung, daß Methylenblau eine auffallende Affinität zu lebenden Zellen zeigt. Es färbte diese Zellen intensiv blau. „Wenn aber nur bestimmte Zellen gefärbt werden“, überlegte Ehrlich, „sollte es dann nicht Farbstoffe geben, die die Krankheitserreger färben und zugleich auch vernichten, ohne dabei die Körpierzellen anzugreifen?“

Dieser revolutionäre Gedanke führte zu einem der größten Fortschritte der medizinischen Wissenschaft: zur Chemotherapie.

1876 hatte der deutsche Chemiker Heinrich Caro das Methylenblau erstmals synthetisiert, und so konnte sich Ehrlich an die Farbwerke Hoechst wenden, die seit 1885 diesen Farbstoff technisch herstellten und ihm daher jede gewünschte Menge überlassen konnten. Ehrlich entwickelte schließlich sein berühmtes Salvarsan®, das überragende Heilmittel gegen die Syphilis. Das war im Jahre 1910, und Paul Ehrlich wurde damit zum Vater der Chemotherapie¹.

Methylenblau ist jedoch nicht nur ein guter Vitalfarbstoff, sondern es ist auch in wässrigen Lösungen ein ausgezeichneter Redoxindikator.

Geräte
2-l-Rundkolben mit Gummistopfen, Korkring, Thermometer, Dreifuß mit Drahtnetz, Stativ und Halterung, Stoppuhr, Schutzbrille, Schutzhandschuhe

Chemikalien
Glucose, NaOH in Plätzchen, destilliertes Wasser, 0,2prozentige wässrige Methylenblaulösung

Versuchsdurchführung
In den Rundkolben trägt man 10 g festes NaOH in 750 ml Wasser ein, fügt 40 g Glucose hinzu, versetzt alles mit 10 ml der Methylenblaulösung und verschließt den Kolben mit dem Stopfen. Schüttelt man nun kräftig, so wird die anfangs

Erklärung


Entsorgung

Das Reaktionsgemisch wird neutralisiert und über das Abwassernetz entsorgt.

Literatur